library("gamlss2")
## Simulate count data using the Poisson distribution.
set.seed(111)
y <- rpois(1000, lambda = 10)
## Create a discretized family using the BCT distribution (with log link for mu).
fam <- discretize(family = BCT(mu.link = "log"))
## Fit a count regression model using the discretized family.
fit_family(y, family = fam)GAMLSS-RS iteration  1: Global Deviance = 5272.794 eps = 0.498257     
GAMLSS-RS iteration  2: Global Deviance = 5182.6298 eps = 0.017099     
GAMLSS-RS iteration  3: Global Deviance = 5169.4544 eps = 0.002542     
GAMLSS-RS iteration  4: Global Deviance = 5163.3186 eps = 0.001186     
GAMLSS-RS iteration  5: Global Deviance = 5126.728 eps = 0.007086     
GAMLSS-RS iteration  6: Global Deviance = 5123.1813 eps = 0.000691     
GAMLSS-RS iteration  7: Global Deviance = 5121.8096 eps = 0.000267     
GAMLSS-RS iteration  8: Global Deviance = 5121.3064 eps = 0.000098     
GAMLSS-RS iteration  9: Global Deviance = 5121.12 eps = 0.000036     
GAMLSS-RS iteration 10: Global Deviance = 5121.0523 eps = 0.000013     
GAMLSS-RS iteration 11: Global Deviance = 5121.012 eps = 0.000007     
