library("gamlss2")
## Simulate count data using the Poisson distribution.
set.seed(111)
<- rpois(1000, lambda = 10)
y
## Create a discretized family using the BCT distribution (with log link for mu).
<- discretize(family = BCT(mu.link = "log"))
fam
## Fit a count regression model using the discretized family.
fit_family(y, family = fam)
GAMLSS-RS iteration 1: Global Deviance = 5272.794 eps = 0.498257
GAMLSS-RS iteration 2: Global Deviance = 5182.6298 eps = 0.017099
GAMLSS-RS iteration 3: Global Deviance = 5169.4544 eps = 0.002542
GAMLSS-RS iteration 4: Global Deviance = 5163.3186 eps = 0.001186
GAMLSS-RS iteration 5: Global Deviance = 5126.728 eps = 0.007086
GAMLSS-RS iteration 6: Global Deviance = 5123.1813 eps = 0.000691
GAMLSS-RS iteration 7: Global Deviance = 5121.8096 eps = 0.000267
GAMLSS-RS iteration 8: Global Deviance = 5121.3064 eps = 0.000098
GAMLSS-RS iteration 9: Global Deviance = 5121.12 eps = 0.000036
GAMLSS-RS iteration 10: Global Deviance = 5121.0523 eps = 0.000013
GAMLSS-RS iteration 11: Global Deviance = 5121.012 eps = 0.000007