GAIC and Generalised (Pseudo) R-squared for GAMLSS Models
Description
Functions to compute the GAIC and the generalised R-squared of Nagelkerke (1991) for a GAMLSS models.
Usage
## Information criteria.
GAIC(object, ...,
k = 2, corrected = FALSE)
## R-squared.
Rsq(object, ...,
type = c("Cox Snell", "Cragg Uhler", "both", "simple"),
newdata = NULL)
Arguments
object
A fitted model object
…
Optionally more fitted model objects.
k
Numeric, the penalty to be used. The default k = 2 corresponds to the classical AIC.
corrected
Logical, whether the corrected AIC should be used? Note that it applies only when k = 2.
type
which definition of R squared. Can be the “Cox Snell” or the Nagelkerke, “Cragg Uhler” or “both”, and “simple”, which computes the R-squared based on the median. In this case also newdata may be supplied.
newdata
Only for type = “simple” the R-squared can be evaluated using newdata.
Details
The Rsq() function uses the definition for R-squared:
where \(L(0)\) is the null model (only a constant is fitted to all parameters) and \(L(\hat{\theta})\) is the current fitted model. This definition sometimes is referred to as the Cox & Snell R-squared. The Nagelkerke /Cragg & Uhler’s definition divides the above with
\(1 - L(0)^{2/n}\)
Value
Numeric vector or data frame, depending on the number of fitted model objects.
References
Nagelkerke NJD (1991). “A Note on a General Definition of the Coefficient of Determination.” Biometrika, 78(3), 691–692. doi:10.1093/biomet/78.3.691
See Also
gamlss2
Examples
library("gamlss2")## load the aids data setdata("aids", package ="gamlss.data")## estimate negative binomial count modelsb1 <-gamlss2(y ~ x + qrt, data = aids, family = NBI)
GAMLSS-RS iteration 1: Global Deviance = 492.7033 eps = 0.148555
GAMLSS-RS iteration 2: Global Deviance = 492.6374 eps = 0.000133
GAMLSS-RS iteration 3: Global Deviance = 492.6373 eps = 0.000000
b2 <-gamlss2(y ~s(x) +s(qrt, bs ="re"), data = aids, family = NBI)
GAMLSS-RS iteration 1: Global Deviance = 406.747 eps = 0.297097
GAMLSS-RS iteration 2: Global Deviance = 374.1346 eps = 0.080178
GAMLSS-RS iteration 3: Global Deviance = 364.2545 eps = 0.026407
GAMLSS-RS iteration 4: Global Deviance = 363.228 eps = 0.002818
GAMLSS-RS iteration 5: Global Deviance = 363.1599 eps = 0.000187
GAMLSS-RS iteration 6: Global Deviance = 363.154 eps = 0.000016
GAMLSS-RS iteration 7: Global Deviance = 363.1529 eps = 0.000003